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Controlled resonant interactions between two spinning waves in a turbulent, 
axisymmetric air jet are documented. Interactions betwen two helical waves with 
spinning mode numbers of + m  and --m induced a cos (2rn95) distortion of the mean 
cross-section. The shape and orientation of the distortion were predictable based on 
the standing wave pattern. Square and elliptical jets were produced in this way and 
the spatial distribution of the coherent large-scale motion is documented. The 
elliptical distortion was comparable in magnitude to a jet issuing from a 2 : 1 elliptical 
nozzle. A near-resonance case produced from spinning mode numbers of m = 0 and 
+ 2  was also examined. 

1. Introduction 
The development of free shear flows is sensitive to boundary conditions. When the 

large turbulent scales are phase locked due to external excitation it is possible to map 
their structure and spatial evolution. These coherent structures have been examined 
in plane mixing layers (Gaster, Kit & Wygnanski 1985), wakes (Wygnanski, 
Champagne & Marasli 1986), and axisymmetric jets (Strange & Crighton 1985). In 
each case these coherent structures have been identified as inflexional instabilities of 
the mean velocity profile (Wygnanski & Petersen 1987). 

This observation has led to considerable progress in predicting the spatial 
structure of large-scale turbulence in the region enveloping the potential core of 
axisymmetric jets. For example, the spatial evolution of the prevailing frequency of 
the most energetic turbulence scales can be predicted from eigenvalues calculated 
from parallel flow, linear stability theory applied to measured mean velocity profiles 
(Petersen & Samet 1988). When the jet was excited acoustically, radial distributions 
of phase-averaged velocity could be predicted from the stability eigenfunctions 
provided the excitation was axisymmetric. Moreover the agreement did not 
deteriorate as the disturbance amplified in the streamwise direction ; excellent 
agreement between phase-averaged measurement and stability eigenfunctions was 
observed even when the disturbance had achieved amplitudes as high as 24 % of the 
jet speed (Samet & Petersen 1988). Based on similar measurements it is now 
apparent that the ‘preferred mode ’ described by Crow & Champagne (1971) is the 
most amplified shear layer instability at x / D  of 4. At every other streamwise location 
there is a different preferred mode (Petersen & Samet 1988). 

If two wavetrains are excited simultaneously quadratic nonlinearities can lead to 
triad resonances. The conditions for resonant interactions are limited by the 
dispersion relation for the shear layer. For example, Petersen (1978) demonstrated 
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statistically that the matching of phase speeds between large-scale, coherent 
structures and subharmonic disturbances was a necessary condition for pairings to 
occur. This has been verified by Cohen & Wygnanski (1987) using controlled 
excitations. 

The present study is concerned with resonant interactions between two spinning 
waves and their influence on the jet flow field. Strange (1981) observed large changes 
in the shape of a jet cross-section when he excited the flow simultaneously with two 
spinning waves of the same frequency. Excitation with two helical waves spinning in 
the opposite direction produced jets with elliptical and square cross-sections. Cohen 
& Wygnanski (1987) later attributed this effect to resonant interactions. Their study, 
however, was confined to the first diameter downstream from the nozzle. The present 
study extends those earlier results by following the spatial development of the 
interaction through the developing region of the jet. 

There are several specific objectives. Cohen & Wygnanski were able to produce a 
resonant interaction between two non-degenerate modes that resulted in a slight 
distortion of the jet cross-section. It was not clear whether this interaction could be 
maintained farther downstream where jet curvature was larger. Other investigators 
(Husain & Hussain 1983 ; Ho & Gutmark 1987) have studied jets issuing from elliptic 
nozzles and have observed interesting phenomena such as enhanced entrainment and 
switching of the principal axes. In  those studies the vortex filaments a t  roll-up had 
non-uniform curvature and so the phenomena have been attributed mainly to self- 
induction. In  the present case an elliptic jet can be produced from a circular nozzle. 
Because the boundary conditions are so different between the two types of jet flow 
it is of interest to know whether some of the same phenomena occur. 

Part 1 of this study is concerned with the interaction and spatial evolution of the 
phase coherent, large-scale turbulence and the influence on the mean flow of the jet. 
In Part 2 (Petersen & Long 1992) the transfer of energy to broadband turbulence and 
the control over small-scale turbulence will be considered. 

2. Experimental techniques 
2.1. Facilities and measurement procedures 

The experimental facilities used in this investigation are described in detail by 
Petersen & Samet (1988), and by Long (1988). The studies were confined to the 
potential core region of a vertical jet of air, 5.08 cm in diameter. The jet speed was 
16 m/s which resulted in a Reynolds number of 5 x lo4 based on exit conditions. For 
part of the study the air supply consisted of a compressor and regulator (Long 1988). 
Later the supply was converted to a centrifugal pump with a speed controller. In 
either case the jet speed was controlled to within 1 % and the free-stream turbulence 
level was 0.15 YO. 

The instrumentation consisted of a ring of eight hot-wire probes equally spaced in 
polar angle and capable of measuring the streamwise component of velocity. The 
probe locations are expressed in cylindrical coordinates (2, r ,  $), where r is the polar 
radius relative to the jet centreline, $ is the polar angle, and x is the streamwise 
distance from the nozzle exit plane. The hot wires were calibrated in situ using 
plenum pressure as the standard. Hot-wire voltage was digitized and converted to 
velocity using a calibration polynomial. Calibration error was less than 1 % including 
drift and data scatter. 

A computer-controlled stepper motor was used to simultaneously traverse all eight 
wires in the radial direction. A cathetometer was used for manual, streamwise 
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positioning. The radial traverse extended from a radius of 1.0 cm to the radial 
location where the mean velocity was 10% of the centreline value. Measurement 
accuracy generally deteriorates with increasing radius because of reverse flow, 
increasing sensitivity to other components of velocity, and thermal effects. 

The jet instabilities were excited acoustically with an array of eight compression 
drivers located at the nozzle lip and equally spaced in polar angle. A polar array 
couples most strongly with radial fluctuations. Because of the strong shear close to 
the nozzle lip this arrangement has proven to be much more efficient in driving 
streamwise fluctuations than the plenum speaker used in previous experiments 
(Samet & Petersen 1988). 

An acoustic waveguide from each speaker terminated in a rectangular duct. The 
speakers were driven from a set of digital- to-analogue converters under programme 
control. The speakers were compensated in amplitude under no-flow conditions using 
a microphone located on the jet centreline in the nozzle exit plane. Phase shifts 
introduced by the speakers at  the frequencies of excitation were negligible. Because 
the object was to excite spinning waves the frequencies of excitation were selected to 
avoid longitudinal acoustic modes of the plenum chamber. 

At this point it is appropriate to make a distinction between ‘excited ’ and ‘forced ’ 
response of the flow. If the amplitude of the imposed disturbance is small then the 
excited flow instabilities will have small amplitude initially. This will be followed by 
a region where the instability is linear and the amplitude growth is exponential with 
streamwise distance. Samet & Petersen (1988) measured amplification ratios as high 
as 17.1 when the initial disturbance was small. At higher excitation levels the 
amplification ratio fell to 3.3 and there was considerable broadband distortion of the 
turbulence spectrum. In the present case, in order to achieve substantial control over 
the mean flow, the disturbance was introduced at a high enough level that the region 
of exponential growth was bypassed. In fact there was virtually no amplification of 
peak values. 

It is possible that such differences in initial conditions may have an important 
impact on the dynamics of the finite-amplitude disturbance that eventually evolves. 
For that reason some distinction should be made between low-level ‘excitation ’ and 
stronger ‘forcing ’. 

2.2. Data processing techniques 
The response of the jet to imposed excitations is documented in terms of the 
distortion of the mean flow and in terms of spatial distributions of phase-averaged 
quantities. The basic signal processing techniques are described in this section. 

The distortion of the mean flow is expressed in terms of contours of mean velocity 
in jet cross-sections at various streamwise locations. Radial profiles of mean velocity 
were measured for each of the eight hot wires using the radial traverse. From each 
profile, radial locations of specific velocity levels were determined from linear 
interpolation. Contours of mean velocity were determined as functions of polar angle 
by fitting the following Fourier series to the radial intercepts: 

4 

R($) = Ro + [a ,  cos (m#) + b,  sin (m$)] .  (2.1) 
m-1 

The coefficients a, and b, were determined from the measured radial intercepts Ri 
according to 

cos (imn/4) {;:} = sin (imn/4) 
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Following Hussain & Reynolds (1970) streamwise velocity can be decomposed into 
a time-average component, a phase-averaged fluctuation, and a phase-incoherent 
fluctuation : 

u = U+Zi+U', (2 .3 )  

where Zi = (u )  - U and u' = u - (u) .  Phase-averaged velocity (u )  is defined 

where the phase reference t ,  for the phase-averaged measurements was based on the 
excitation signal. Slope and level was used as the sampling condition and a latching 
algorithm was used to prevent multiple triggers in case of noise. The time resolution 
was & of the excitation period and the sample size N was generally about 1000. The 
standard deviation of the mean was generally less than 0.5%. 

Following Gaster et al. (1985) a wave travelling on a dispersive, axisymmetric 
shear layer can be modelled as 

where m is the spinning mode number, n is the harmonic number, T is the period of 
the forcing signal, a is the streamwise wavenumber component and F, is the 
eigenfunction. The dependence on x is caused by shear layer spreading. The cross- 
stream variation is expressed in terms of the similarity parameter 7 defined as 

where Ro.5 is the radius corresponding to U ( r ) / U j  = 0.5, Uj being the jet velocity. The 
momentum thickness 0 is defined as 

Because the phase-averaged velocity is periodic in t and $ it can be decomposed into 
a Fourier series with coefficients Fmn, defined 

where $o is an arbitrary reference angle. Note that Fmn is complex and the modulus 
lFmnl is the local amplitude of the component with spinning mode number m and 
harmonic n. It is related to the eigenfunction, F,, in (2.5) by 

3. Resonant interactions between degenerate spinning waves 
The jet was forced simultaneously with two helical wavetrains spinning in opposite 

directions. The frequency and streamwise wavenumber components were identical. 
The azimuthal wavenumber components were equal and opposite. From symmetry 
the stability eigensolutions are degenerate. 
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FIQURE 1. Jet cross-section distortion induced by forcing at 206 Hz with spinning mode number 
combination m = + 1 ,  - 1 .  Mean velocity contours from 0.3U, to 0.9Uj in 0.2Uj intervals. 
Measurement location x / D :  (a)  0.5; ( b )  1.0; (c) 3.0; (d )  4.0. 

Assuming that the amplitudes are small, the momentum equation can be modelled 
by a wave equation driven by a weak nonlinear operator. If the medium is spatially 
homogeneous and the leading nonlinearity is quadratic then a triad resonance with 
a third wavetrain is possible provided the three satisfy the following resonance 
conditions (Phillips 1974) : 

k , + k , f k 3  = 0, (3.1) 

w1+w2+w3 = 0, (3.2) 

where k is the wavenumber vector and w is the frequency of the wavetrain. The 
resonance conditions must be compatible with the dispersion relationship in order for 
a triad resonance to occur. 

Cohen & Wygnanski (1987) showed that the following resonance conditions are 
possible if two unstable wavetrains, denoted by subscripts 1 and 2, travel on an 
axisymmetric shear layer that is homogeneous in the streamwise direction : 

a3 =a,--:; wg = wl-w,; m3 = ml-m,, (3.3) 

a3 = a,+a,; w3 = w,+w,;  m3 = m,+m,. (3.4) 

The subscript 3 denotes the interaction wave and a* is the complex conjugate of a. 
The real and imaginary parts of a refer to streamwise wavenumber component and 
spatial growth rate. 

If the two wavetrains are degenerate with spinning mode numbers + m  and -m,  
(3.3) leads to an interaction term with frequency and streamwise wavenumber equal 
to zero (Cohen & Wygnanski 1987): 

6, = lF3(q) I e-,qZ COB (2mq5). (3.5) 
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FIQURE 2. Jet cross-section distortion induced by forcing at 206 Hz with spinning mode number 
combination m = +2,  -2. Mean velocity contours from 0.3U, to 0.9U, in 0.2U, intervals. 
Measurement location x / D :  (a) 0.5; (b)  1.0; (c) 2.0; (d )  4.0. 

Physically the superposition of the two wavetrains produces a standing wave 
pattern. The added mean flow zi results from the associated wave stresses. The 
magnitude of the added mean flow grows in the streamwise direction as the product 
of the two wave amplitudes and causes a cos (2m$) distortion of the jet cross-section. 

Spinning wave pairs with mode numbers m = + 1, - 1 and m = +2, - 2 were 
produced by the speaker array. The resulting mean flow distortion is shown in figures 
1 and 2. Velocity contours determined from the Fourier series (2.1) are shown for jet 
cross-sections a t  various streamwise locations. In each case the jet diameter is 
indicated by the dotted cicle. The modulus c, = (a; + bk)i  of each Fourier coefficient 
is indicated in the spectral plots. In each cross-section the lowest spectral plot 
corresponds to the innermost contour. Each spectral plot is normalized by its 
maximum and c,, the mean radius, is suppressed. The maximum, expressed as a per 
cent of c,, is indicated to the right of each spectrum. 

The expected modulation is emphasized by darkening the appropriate spectral 
coefficient. For the interaction between modes + 1 and - 1, figure 1, the c2 coefficient 
corresponding to a cos(2$) distortion, is emphasized. In  the case of interaction 
between modes + 2  and -2, figure 2, the c p  coefficient corresponding to a cos (44) 
distortion is emphasized. In each case the measured distortion matched the 
expectation. 

Although elliptical and square cross-sections were produced by the forcing, the 
initial evolution was different from jets produced by elliptical or square nozzles. The 
shear layer of a jet issuing from a non-circular nozzle rolls up into vortex filaments 
with generally uniform thickness but with non-uniform curvature (e.g. Ho & 
Gutmark 1987). Non-uniform curvature leads to strong self-induced distortion of the 
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FIIXJRE 3. Streamwise development of (a) entrainment and (b)  cross-section distortion. Forcing at 
206 Hz with spinning mode numbers +m,  - m :  0, m = 1 ; A, m = 2;  ., no forcing; +, 2:  1 
elliptical nozzle unforced (Ho BE Gutmark 1987, figure 17). 

filament. In the present case the jet was initially circular and the shear layer was 
modulated in thickness (figures l a  and 2a). The uniform distortion of the jet cross- 
section did not emerge until about x/D = 2.0 or 3.0 (figures i c  and 2c).  No axis 
switching occurred within the potential core region x/D < 4.0. 

By the end of the potential core the degree of distortion achieved by forcing 
spinning mode numbers m = + 1, - 1 was similar to that reported by investigators 
using 2 : 1 elliptical nozzles. At  x/D = 4.0 for example the ratio of the major to minor 
axes at  the half-velocity contour was 1.22 (figure Id) and is identical to the value 
measured at  that location by Husain & Hussain (1983, figure 3, no excitation). 

Enhanced entrainment is a more relevant measure because it is a major motivation 
for the interest in non-circular nozzles. Entrainment ratios, shown in figure 3(a ) ,  are 
comparable to those reported by Ho & Gutmark (1987) for a 2 : 1 elliptical nozzle. It 
is not clear whether the mechanisms causing the enhanced entrainment are similar. 
In the present study the added mean flow was the result of wave-induced stresses. 
It seems unlikely that self-induction of vortex filaments plays an important role in 
this case. It should be emphasized that the magnitude of enhanced entrainment was 
the same for spinning mode number combinations m = +2, -2 as for m = + 1, - 1. 
The integrated volume flux Q,  truncated at Ro.l the radius corresponding to 
U / U j  = 0.1, is defined 

Q = r'' V(r ,  #) T d# dr. (3.6) 
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FIQURE 4. Effect of forcing level on mean flow distortion. Forcing at 206 Hz with spinning 
mode numbers + 1 ,  - 1.  +, Forcing level used in this study. 

The volume flux was normalized by exit conditions &, defined 

The eccentricity of the velocity contours varied somewhat from one contour level 
to the next. Figure 3 ( b )  is an integrated measure of eccentricity. Integrals of volume 
flux have been weighted by cos (2mg5). Spinning mode number combinations of 
m = + 1,  - 1 and m = +2 ,  - 2  are represented by cos (2$) and cos (4$) projections. 
Initially the magnitudes increased with downstream distance reaching a plateau 
near x / D  = 1.0. The plateaux extended to x / D  = 2.5 in the case of m = & 1 and to 
z / D  = 1.3 in the case of m = & 2 .  The plateau regions were bracketed by the cross- 
sections shown in figures 1 (b ,  c) and 2 (b ,  c). They mark the transition from modulation 
of the mixing-layer thickness to distortion of the jet cross-section. Beyond that 
region the magnitude of the projections increased more or less linearly with x/D. 

The resonant interaction and the degree of distortion are functions of the 
frequency and level of excitation. Their selection was based on a parameter study. 
The frequency selected was 206 Hz ; the corresponding Strouhal number fD/U,  was 
0.65. If the frequency was an octave higher, the growth of the disturbance occurred 
over a much shorter distance and the cumulative effect on the mean flow was weaker. 
If the frequency was an octave lower the growth was much slower and four diameters 
was insufficient distance for the mean flow distortion to develop. 

The objective in setting the level of forcing was to produce a significant change in 
the mean flow. In figure 4 the level of cross-section distortion is shown as a function 
of forcing level in the case of forcing with spinning mode numbers of m = + 1, - 1. 
The mean flow distortion is expressed in terms of the ratio of major to minor axes of 
the half-velocity contour measured a t  x / D  = 4.0. The forcing level is expressed in 
terms of the phase-averaged modulus IF,,I,,, measured at x / D  = 0.25, the 
measurement station closest to the nozzle exit. Phase-averaged values at that 
location were proportional to speaker input voltage. 

The degree of mean flow distortion at  x /D  = 4.0 increased as the forcing level 
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FIQURE 5. Radial profiles of phase-averaged modulus. Forcing at 206 Hz (n = 1)  and spinning mode 
numbersm=+l , -1 .  b , m = + l ,  n = l ;  , , m = - l , n = l ;  n , m = O , n = 2 ; -  , stability 
eigenfunctions. (a)  x / D  = 0.5, ( b )  1.0, (c) 2.0, (d) 4.0. 

increased and the trend was roughly linear. The straight line shown in figure 4 was 
extrapolated from the lowest two data points and is intended to emphasize that the 
departures from linearity were small. The elliptical distortion shown in figures 1 and 
3 was induced using a forcing level corresponding to lFlllmm/Uj = 0.17. The same 
speaker input voltages were used for the spinning mode number combination of 
m = +2,  -2. 

The measure used in figure 4 to define the forcing level was rather arbitrary. When 
the forcing is introduced from the plenum it is common to define the forcing level in 
terms of free-stream fluctuations measured on the centreline in the plane of the 
nozzle (e.g. Crow & Champagne 1971). When the forcing is introduced from outside 
the jet as in the present case the disturbance is exponentially damped inside the 
potential core. Consequently there is some ambiguity in defining the level. 

We turn now to the coherent, large-scale motion induced by the forcing. Radial 
profiles of modulus lFm,J, computed according to (2.8), are shown in figures 5 and 6. 
The momentum thickness O,.,, based on the measured mean velocity profile and 
truncated at  Ro,l (the mean radius corresponding to U/U,  = 0.1) is 
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FIQURE 6. Radial profiles of phase-averaged modulus. Forcing at 206 Hz (n = 1 )  and spinning mode 
numbers m=+2,  -2. 0,  m = + 2 ,  n =  1; +, m = - 2 ,  n =  1; m, m = 0 ,  n =  2 ;  -, stability 
eigenfunctions. ( a )  x /D  = 0.5, ( b )  1.0, ( c )  2.0, ( d )  4.0. 

In  each case the frequency of the fundamental n = 1 modes was 206 Hz, the forcing 
frequency. The axisymmetric harmonic (m = 0, n = 2 )  is also shown. The frequency 
and spinning mode number of this mode correspond to the vector sum of the two 
forced waves. The wavenumber resonance condition, equation (3.4), will be addressed 
later. By x / D  = 0.5 the profile shape of the m = & 1 mode was identical to  the shape 
of the m = & 2 mode within measurement resolution. This is consistent with 
arguments by Cohen & Wygnanski ( 1987) that stability eigensolutions of low-order 
spinning modes should be identical in the initial region of the jet. Their argument 
required both the shear-layer thickness and the streamwise wavelength to be small 
compared to  jet diameter. Those conditions may be too restrictive considering that 
the wavelength in the present case was approximately one diameter. There was no 
amplification of peak levels a t  this high level of forcing. The peak levels decayed 
monotonically with streamwise distance. We note a departure from symmetry in the 
radial profiles of degenerate modes m = + 2 and m = - 2 in the range x / D  = 1 .O to 2.0 
(figure 6 b ,  c). 

Stability eigenfunctions were calculated a t  selected locations. They were obtained 
from inviscid spatial stability theory applied to the measured, mean velocity profile 
(Petersen & Samet 1988). They were calculated only a t  locations where the modes 
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FIGURE 7.  Streamwise development of various measures (see text) of coherent, large-scale 
amplitude. Forcing at 206 Hz (n  = 1 )  and spinning mode numbers m = + 1, - 1 .  D , m = + 1 ,  
n = l ;  b, m = - - l , n = l ;  m , m = O , n = 2 .  

were linearly unstable. At s / D  = 0.5 the agreement between measurement and 
stability theory was reasonably good for the fundamental disturbance. This 
agreement deteriorated as the mixing-layer thickness increased (e.g. figure 5 b ) .  Some 
of this disagreement can be attributed to the distortion of the mean flow. The 
stability equations assume an axisymmetric base flow. In  practice the base flow was 
modelled after the measured mean profile averaged over polar angle. Asymmetries in 
the jet cross-section cause spatial smoothing of the phase-averaged measurements 
and so spatial structure evident in the eigenfunction of figure 5 ( b )  would be difficult 
to capture experimentally. Possibly the quantitative agreement could be improved 
by convolving the eigenfunctions with an appropriate spatial filter. The agreement 
between theory and measurement was poor for the harmonic disturbance at all 
locations. 

The streamwise evolution of the phase-averaged amplitudes is shown in figures 7 
and 8. Following the format used by Cohen & Wygnanski (1987) three different 
measures are presented : (a)  the maximum amplitude from each radial distribution 
normalized by the jet speed ; ( b )  the amplitude integrated over the cross-section area 
of the jet and normalized by the exit-plane mass flux Q0 = U j A o ;  and (c) the 
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FIQURE 8. Streamwise development of various measures (see text) of coherent, large-scale 
amplitude. Forcing at 206 Hz (n  = 1 )  and spinning mode numbers m = +2, -2. 0, m = +2,  
n = l ;  + , m = - 2 , n = l ;  i J , m = O , n = 2 .  

amplitude averaged over the cross-section and normalized to unity at the initial 
measurement location. The radial positions R,.,, and R,.,, correspond to radii where 
the mean velocities, averaged over time and polar angle, are 0.95Uj and O.iOU, 
respectively. Measure (a) is influenced by changes in the shape of the radial profile. 
Measure (b )  is strongly influenced by the streamwise spreading of the shear-layer 
thickness. Measure (c) is an attempt to express the growth as an amplification ratio 
and to eliminate the purely geometric influence of spreading. In computing measure 
(b )  the amplitude was divided by 4 2 ,  appropriate to an integrated r.m.s. level of a 
purely sinusoidal disturbance. 

At  these high forcing levels there was very little growth evident in either measure 
(a)  or (c). By contrast Samet & Petersen (1988) measured amplitude gains ranging 
from 3.3 to 17.1 as the level of excitation was reduced by a factor of 130. Apparently 
the regime of linear amplification was bypassed in the present case. The growth in 
integrated amplitude, measure ( b ) ,  was the result of the competition between the 
spreading of the jet cross-section and the decay of the forced disturbance. The 
asymmetry between degenerate mode numbers rn = + 2  and -2, evident earlier in 
figures 6 ( b )  and 6 ( c ) ,  can be observed also in figure 8. The asymmetry was confined 
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within the region from x / D  = 1.0 to 3.0. This region encompasses the transition from 
cos(4q5) modulation of the mixing-layer thickness to cos(4q5) distortion of the jet 
cross-section. 

The question of resonance will be considered next. From the standpoint of linear 
stability theory applied to a parallel base flow, the eigenmodes are degenerate for two 
waves of the same frequency and opposite spinning mode numbers. In  that case 
resonance condition (3.3) would be satisfied identically. Eigenfunction degeneracy 
was tested experimentally in figures 5 and 6. Deviations were observed between 
profiles for + 2  and -2 spinning mode numbers. This raises questions about the 
degeneracy of the eigenvalues as well. 

The resonance conditions are tested directly by comparing the phase advance of 
'resonant' waves. The phase of limn@, a),  equation (2.8), is the delay between the 
phase-averaged wave and the reference signal. From (2.8) and (2.9) the phase 
advance can be written 

The subscripts m and n refer to spinning mode number and harmonic number; 
$'mn(xO, a)  is the initial phase offset. 

As long as the eigenvalues are degenerate the phase difference between two forced 
waves with opposite spinning mode numbers of + m and - m should be 

(3.10) 

which is constant along lines of constant a. 
Measured phase advances are shown in figure 9. The measurements were made 

along a ray making an angle of - 7" with the nozzle lip. This corresponds roughly to 
the inner edge of the axisymmetric mixing layer. As expected the phase difference 
was constant with streamwise distance for both the m = k 1 and m = f 2  forcing. 

The phase advance of the forced wave alone is included in figure 9 for reference. 
In both cases the initial wavelength AID of the forced wave was about 1. The initial 
phase speed of the wave with spinning mode number m = 1 was approximately 7 YO 
greater than the wave with spinning mode number m = 2. 

Resonance condition (3.4) is also considered in figure 9. The interaction wave 
corresponding to the vector sum of the two forced waves would have spinning mode 
number m = 0 and harmonic number 7~ = 2. Profiles of this mode were included in 
figures 5 and 6. Along paths of constant 17 the phase difference between the forced, 
vector sum and the interaction wave can be written 

Y + m l ( x ,  7 1 ) - y - m l ( ~ ,  7) = $+ml-Ilr-ml,  

Y+,,(x)+ Y-.ml(x)- YO2(x )  = [2am1(~)-ao2(~)]df;+constant. (3.11) I: 
For resonance the phase difference (3.11) should be uniform with x. 

Based on figure 9 the interaction does appear to be resonant beyond x / D  = 1. 
initially however the phase difference (3.11) advanced with streamwise distance. The 
positive slope implies 2aml > ao2. Consequently the phase speed of the harmonic 
2w0/aO2 initially exceeded that of the forced fundamental wo/aml.  The origin of the 
interaction wave is easy to imagine. Distortion either in the speaker output or in the 
shear-layer response would create harmonics, and imperfect wave cancellation 
caused either by imperfect speaker compensation or by mean flow distortion would 
create an axisymmetric component. The initial non-resonance does raise questions 
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FIQURE 9. Streamwise advance of phase difference along a -7' ray. Phaae difference: 0,  
Y+ll-Y-ll; A, Y+21-Y-zl; 1, Y+ml+Yl_ml-!P,,z. Phase advance: b, !P+ll; +, !P+21. Forced 
spinningmodenumbers: ( a ) m = + l , - 1 ;  ( b ) m = + 2 , - 2 .  

though about the dynamic significance of the triad resonance. The forced wave 
stresses were strongest in the first wavelength where the interaction was non- 
resonant. Based on the distributions shown in figures 7 and 8 there does not seem to 
be much energy transfer to the harmonic beyond x/D = 1.0. However the 
opportunity for resonant exchange of energy may play a role in the asymmetries 
observed in figures 6 and 8. 

Resonance was indicated in figure 9 by constant phase difference. The value of the 
constant was determined by the phase offset introduced by the speakers. The 
spinning waves were introduced with a phase offset to avoid total cancellations in the 
standing wave pattern at any particular speaker. The effect of varying the phase 
offset was to change the polar orientation of the mean flow distortion. This occurred 
in a controlled and predictable manner. 

The superposition of two spinning waves propagating along a non-dispersive 
mixing layer can be modelled as follows: 

U U C.C., (3.12) = p ei(ox+m+-wt-~o) + ei(oz-m+wt) + 

where $o is the phase offset. The longitudinal wave stress is 
- 
u2 = { 1 + cos [2m(575 - $ho/2m)3}. (3.13) 

The phase offset should result in a shift in the principal axis by the amount t,h0/2m. 
This prediction is verified in figure 10 in connection with forced spinning mode 
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FIGURE 10. Effect of phase offset on jet cross-section at  x/D = 4.0. Mean velocity contours from 
0.3Uj to 0.9Uj in 0.2U, intervals. Relative phase offset between waves with spinning mode numbers 
m = + l , - l ;  (a)  0'; (b)  90"; (c) 180"; (d )  270'. 

numbers m = + 1, - 1. The offset y20 was incremented in steps of in and the principal 
axis advanced in steps of in as predicted. For each contour level the polar angle of 
the principal axis was computed from 

#,, = arctan (b,/a,). (3.14) 

The coefficients a, and b, are Fourier coefficients computed according to (2.2). The 
principal axes indicated in figure 10 were based on #o and averaged over the four 
contour levels. 

4. An interaction between non-degenerate spinning waves 
The mean flow distortion of the previous section was the result of resonant 

interactions between forced waves having equal but opposite spinning mode 
numbers. Owing to symmetry, the resonance conditions (3.3) were satisfied 
identically. Under more general conditions the forced interactions may be resonant 
over limited regions of the flow. 

The particular experiment considered here involved forced waves of the same 
frequency and with spinning mode numbers m = 0 and m = 2. Based on linear 
stability theory these modes would be expected to obey the same dispersion 
relationship in the initial region of the jet. In that case one would expect the 
resonance conditions (3.3) to induce a cos (295) modulation of the mean flow. Farther 
downstream, based on linear stability theory, one would expect the phase speeds of 
the two modes to diverge. 
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FIGURE 11. Je t  cross-section distortion induced by forcing a t  206 Hz with spinning mode number 
combination m = 0, +2. Mean velocity contours from 0.3U1 to 0.9UI in 0.2U, intervals. 
Measurement location x / D :  (a) 0.5; ( b )  1.0; (c) 2.0; (d )  3.0. 

The evolution of the jet cross-section is shown in figure 11. As predicted the 
dominant modulation was initially cos (24) (figure l l a ,  b) .  Beyond x / D  = 2.0, 
however, cos (44) emerged as the dominant cross-section distortion (figure l l c ,  d ) .  
This was an unexpected result and it resembles the interaction observed earlier 
(figure 2) in connection with forced waves having a spinning mode number 
combination of m = +2, -2. 

Radial profiles of phase-averaged modulus ~FmJ are shown in figure 12. The forced 
modes are shown along with a spurious wave not deliberately introduced by the speakers 
with a spinning mode number of m = -2. At x /D  = 0.20, the measurement station 
closest to the nozzle lip, the spurious mode was 14% of the m = 2 mode. By 
x / D  = 2.0 the spurious mode had grown to attain a maximum amplitude 63% of 
the forced, m = 2 mode. Such spurious modes are a feature of helical forcing and they 
occur even when a single helical wave is forced (Petersen, Samet & Long 1987). 

The profile shape of the m = - 2 mode seems to be a combination of the m, = 0 and 
m = 2 mode shapes (figure 12b). This is indirect evidence that the mode was caused 
by nonlinearities. Even if the m = -2  mode was introduced inadvertently through 
imperfect compensation between speakers its spatial evolution cannot be explained 
by simple superposition of linear instabilities. 

The streamwise evolution of modulus integrated over the jet cross-section is shown 
in figure 13. There is evidence of energy exchange from the forced, m = + 2 mode to 
the spurious, m = - 2 mode. Between x / D  = 1 .O and 2.0 there was a drastic decay in 
the m = + 2  mode as compared to the m = 0 mode. Beyond x / D  of 2.0 the m = + 2  
and m = -2 modes seem to track each other and it was in this region of the flow that 
cos (44) modulation emerged as the dominant cross-section distortion. 
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FIQURE 12. Radial profiles of phase-averaged modulus. Forcing at 206Hz and spinning mode 
numbers m = 0, + 2. Spinning mode number : , m = 0 ;  0,  m = + 2 ; +, m = - 2 (spurious mode). 
(a) x / D  = 0.2, ( b )  2.0. 

FIGURE 13. Streamwise development of phase-averaged modulus integrated over the jet cross- 
section. Forcing at 206 Hz and spinning mode numbers m = 0, + 2. Spinning mode number : El, 
m = 0; 0,  m = +2;  +, m = -2 (spurious mode). 

Possible resonant interactions of type (3.3) between spinning mode number 
combinations of m = 0,2 and m = + 2, - 2 are considered in figure 14. Based on the 
advance of phase difference there are no clear resonances. The slopes of the phase 
advances imply that the axisymmetric wave travelled faster than either helical 
wave. The helical wave with spinning mode number m = + 2 travelled faster than the 
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FIGURE 14. Streamwise advance of phase difference along a -7' ray. Forcing at 206 Hz and 
spinning mode numbers m = 0, + 2. Phase difference : 0 ,  !P+'+21 - !Pol; A, Y+21 - Y-21. Phase 
advance : +, !P+zl. 

wave with mode number m = -2. The latter combination was much closer to 
resonance, though. 

5. Conclusions 
Two helical waves with the same frequency and with spinning mode numbers of 

m = + 1 and m = - 1 were forced simultaneously and the spatial evolution of their 
interaction was mapped throughout the potential core region of a jet issuing from a 
circular nozzle. Similarly the forced interaction between spinning modes of m = + 2 
and m = - 2 was mapped. As originally reported by Strange (1981) the shape of the 
jet was drastically altered. Although an attempt was made to optimize the frequency 
and level of forcing the interactions selected were only two of many possible 
interactions. 

Based on the polar modulation of turbulent stresses caused by the standing wave 
pattern produced by the interaction between the m = f 1 modes, a cos (24) distortion 
of the mean cross-section was predicted. This was confirmed by direct measurement. 
The interaction between waves with spinning mode numbers of m = f 2 produced a 
cos (4q5) distortion of the jet cross-section as predicted. The spatial orientation of the 
cross-section distortion could be controlled in a predictable way by adjusting the 
phase offset between the forced waves. 

The entrainment ratio was about 1.8 times that of an unforced jet. The enhanced 
entrainment was comparable to that produced by a 2 : 1 elliptical nozzle. In contrast 
to jets issuing from an elliptical nozzle, no vortex curvature effects were observed. 

The resonance between forced waves with spinning mode numbers of 0 and + 2  
should produce a cos (24) distortion of the jet cross-section. While this was initially 
observed near the nozzle exit, farther downstream the dominant distortion was 
cos (44). This unexpected result was produced by the interaction between the forced 
m = + 2  mode and a spurious m = -2  mode. The spurious mode absorbed energy 
from the forced mode until the two attained the same order of magnitude. 

The authors would like to thank Professor I. Wygnanski for his technical advice. 
This research was supported by the National Science Foundation under grant MSM 
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